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Abstract

Understanding aquatic ecosystem metabolism involves the study of two key processes: carbon fixation via primary production and
20 organic C mineralization as total ecosystem respiration (ER;). In streams and rivers, ERo includes respiration in the water column
(ERy) and in the sediments (ERsq). While literature surveys suggest that EReq is often a dominant contributor to ERy, recent
studies indicate that the relative influence of sediment-associated processes versus water column processes can fluctuate along the
river continuum. Still, a comprehensive understanding of the factors contributing to these shifts within basins and across stream
orders is needed. Here we contribute to this need by measuring ERw. and aqueous chemistry across 47 sites in the Yakima River
25 basin, Washington, USA. We found that ERy rates varied throughout the basin during baseflow conditions, ranging from —7.38
to 0.36 g O, m~ d7!, and encompassed the entire range of ERyc rates from previous work. Additionally, by comparing to ER
estimates for rivers across the contiguous United States, we suggest that the contribution of ERy. rates to reach-scale ER rates
across the Yakima River basin are likely highly variable, but we did not test this directly. We did not observe clear increases in
ERy. moving down the stream network, and instead observed that ERy. is locally controlled by temperature, dissolved organic
30 carbon, total dissolved nitrogen, and total suspended solids, which explained 40% of ERy. variability across the basin. Our findings
highlight the potential relevance of water column processes in aquatic ecosystem metabolism across the entire stream network and
that these influences are likely not predictable simply via position in the stream network. Our results are generally congruent with
previous work in terms of locally-influential variables, suggesting that the observed variability and suite of associated

environmental factors influencing ER. are potentially transferable across basins.

35 1 Introduction

Metabolism in streams and rivers includes both gross primary production (GPP) and ecosystem respiration (ER) as fundamental

processes that shape energy dynamics and nutrient cycling in riverine systems (Bernhardt et al., 2018). GPP and ER,y impact
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biogeochemical cycling through the fixation and subsequent breakdown and processing of carbon (C) in aquatic ecosystems (Allan
et al., 2021; Genzoli & Hall, 2016; Hall, 2016; Hall & Hotchkiss, 2017; Reisinger et al., 2016). Riverine metabolism is modulated
40 by various environmental features, including physical and biogeochemical factors. Physical parameters include discharge, flow
regimes, flow extremes, light availability, and temperature (Bernhardt et al., 2022; Hensley et al., 2019; Jankowski & Schindler,
2019; Nakano et al., 2022). Biogeochemical influences include the availability, amount, and composition of C and other nutrients
(Bertuzzo et al., 2022; Garayburu-Caruso et al., 2020; Mulholland et al., 2008; Reisinger et al., 2021). Additionally, watershed
characteristics such as stream size or drainage area, hydrologic connectivity, watershed geomorphology, and land use and land

45 cover further affect these metabolic processes (Bernot et al., 2010; Demars, 2019; Finlay, 2011; Jankowski & Schindler, 2019).

Reach scale ecosystem metabolism encompasses biogeochemical processes that occur in both the water column and in benthic and
hyporheic sediments (Hall & Hotchkiss, 2017). Historically, metabolism studies focused on headwater streams which are
characterized by relatively large contact areas between surface water and the benthic sediments (Alexander et al., 2007; Battin et
50 al., 2008; Findlay, 1995; Gomez-Velez et al., 2015; Mulholland et al., 2008; Peterson et al., 2001). Recent advances in computing
power and the increased availability of high-resolution sensor data (e.g., dissolved oxygen, temperature, and river depth) have
expanded the scope of metabolism studies beyond single small streams enabling researchers to investigate the relative contributions
of ERseq and water column respiration (ERwc) to ERy across diverse stream networks and orders. These efforts show that the
proportion of ER derived from EReq varies greatly across different sites, contributing from 3% to 95% of ER (Battin et al.,
55 2003; Fuss & Smock, 1996; Gagne-Maynard et al., 2017; Jones Jr, 1995; Kaplan & Newbold, 2000; Naegeli & Uehlinger, 1997).
This observed variability in the fraction of ERo derived from ERgq indicates that ERy. may be important in certain places and

times.

Water column processes, including nutrient cycling, occur at considerable rates and become increasingly important as rivers grow
60 in size, marking a transition from benthic-dominated to water column-dominated processing (del Giorgio & Williams, 2005;
Gardner & Doyle, 2018; Reisinger et al., 2015, 2016). However, even as rivers increase in size, the relative contribution of ERy.
to ER remains variable, likely in response to changing environmental conditions (Genzoli & Hall, 2016; Reisinger et al., 2021;
Ward et al., 2018). This highlights a key knowledge gap that while the role of the water column in reach-scale processes such as
GPP and ER likely fluctuates along the river network, this relationship remains poorly understood. We contribute to addressing
65 this knowledge gap by investigating the spatial variation of ERy. in the Yakima River basin, Washington, USA. The Yakima River
basin is representative of the Columbia River basin, one of the largest river basins in the contiguous United States (CONUS), that
spans the northwest region of CONUS. The Yakima River basin encompasses climatic regimes, biomes, physical settings, and land
use conditions commonly found throughout the Columbia River basin and the western CONUS. Using the environmental diversity
of the Yakima River basin, our goal was to generate knowledge of ER,. that could be transferable across the Columbia River basin
70 and potentially beyond. We focus on ERy, during summer baseflow conditions and specifically 1) compare ER,, from the Yakima
River basin to published ERw. and ER;, from other systems; 2) test the hypothesis that ERy. will increase moving down the stream
network; and 3) compare variables that explain variation in ERy. to those found as explanatory in previous studies. To address
these objectives, we estimated ER,. and measured surface water chemistry at 47 sites across the Yakima River basin during the
summer of 2021. Our estimates of ERy. span all previously reported rates and while we did not observe clear increases in ERy.

75 moving down the stream network, the most important explanatory variables did align with previous studies.
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2 Methods
2.1 Methods Overview

Field sites in the Yakima River basin were selected to be representative of biophysical attributes of the larger Columbia River
basin. For this, we grouped all catchments in the Columbia River basin into six classes sharing similar landscape characteristics
80 using key biophysical attributes and selected sites in the Yakima River basin from each of the six classes. Final field locations
spanned six Strahler stream orders and a wide range of land cover types and physical settings. We used dark bottle incubations and
collected surface water chemistry samples to study the spatial variability of ERy. at a basin scale with respect to environmental
conditions during summer baseflow conditions in 2021. We also compared ER,,. observed in the Yakima River basin against
literature ERy. and ERy values to understand how the Yakima River basin relates to streams and rivers across the world. We used
85 Least Absolute Shrinkage and Selection Operator (LASSO) regression to evaluate the relationship between ER,. and drainage
area, stream temperature, surface water chemistry, and organic matter putative biochemical transformations as a proxy for the
diversity of reactions occurring in upstream reaches to determine the primary factors influencing ERy. throughout the Yakima
River basin. All analyses were performed using R Statistical Software (v4.2.0) . All data generated from the sampling study,

including data not evaluated in this manuscript, are publicly available.

90 2.2 Watershed characterization and site selection

The Yakima River basin is the fifth-largest basin in the Columbia River basin and is located entirely within the state of Washington,
USA. The basin is roughly 16,000 km? and spans forested mountainous regions in the west to arid valleys and plains in the east.
The basin has a diversity of land covers and land uses dominated by shrubland, forest, and agriculture. Annual precipitation ranges
from up to 350 cm in the west to 25 cm in the east (Vano et al., 2010).
95

To enable further testing of the transferability of study results to catchments throughout the Columbia River basin, we strategically
selected sampling sites in the Yakima River basin based on their biophysical (e.g. hydrology, topography, vegetation type)
characteristics. This was done by first grouping all National Hydrography Dataset Plus Version 2.1 (NHDPlusV2.1) catchments
(McKay et al., 2012) in the Columbia River basin (» = 181,531) into six classes sharing similar landscape characteristics using

100 cluster analysis. To capture the variability in biophysical settings found across the Columbia River basin, we selected 16 key
attributes as input variables to the cluster analysis, including climate, vegetation structure and function, topography, and wildfire
potential (Table S1). We then selected multiple sites within each of the six Columbia River basin classes. Existing, readily available
geospatial data came from multiple sources including NASA Moderate Resolution Imaging Spectroradiometer (eMODIS) Remote
Sensing Phenological (RSP) data (U. S. Geological Survey, 2019); NASA MODIS land cover type (Friedl & Sulla-Menashe,

105 2019); NASA MODIS normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (FPAR, %),
and leaf area index (LAI, m?> m2) (Myneni et al., 2015); NASA MODIS total evapotranspiration (ET, kg H,O m™2 d™!) (Running
et al., 2017); NASA MODIS terrestrial net primary productivity (NPP, kg C m™2 y™!) and terrestrial net ecosystem productivity
data (NEP, kg C m? y ') (Running & Zhao, 2019); PRISM precipitation data (PRISM Climate Group, Oregon State University,
2023); NHDPlusV2.1 stream length and catchment boundaries (McKay et al., 2012); USGS National Elevation Dataset (NED) 1/3

110 Arc-Second Digital Elevation Model topography data (U.S Geological Survey, 2023); USFS Wildfire Hazard Potential (WHP)
data (Dillon, 2018); and Landscape Fire and Resource Management Planning Tools (LANDFIRE) existing vegetation percent
cover (%) and height (m) data (Dillon & Gilbertson-Day, 2020).
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We used a k-means clustering algorithm using the kmeans function within the ‘stats’ package in base R to group NHDPlusV2.1
115 catchments with similar properties using the normalized, statistical moments (minimum, maximum, mean, and standard deviation
(SD)) for 70 geospatial variables within each NHDPlusV2.1 catchment (Table S1) as input. To calculate statistical moments for
each variable, we summarized geospatial data types at the NHDPlusV2.1 catchment level using two different methods: zonal
statistics for continuous raster data and tabulation for vector data. Zonal statistics calculate statistical moments by individual
catchment polygon. Tabulation calculates total length or area of a particular vector feature within each individual catchment
120 polygons. We evaluated 13 different sets of variable-statistical moment combinations for use in the cluster analysis and selected
variable set 8, which included the zonal mean and zonal standard deviation for 70 variables (n = 140) (Table S2). Once the data
for variable set 8 were summarized at the NHDPlusV2.1 catchment level, we calculated z-scores (z) for each geospatial variable.
Resultant z-scores for variable set 8 were fed into the k-means classifier, which iteratively adds each catchment to one of n clusters,
with n being set by the user (n = 15, this study), using Euclidean distance to minimize within-cluster distance and maximize
125 between-cluster distance. We ran multiple iterations of the cluster analysis using 2—15 clusters using the mean and standard
deviation of all variables. To visualize the reduction in within-cluster variation between iterations 1-15, we generated elbow plots
by plotting the Within Cluster Sum of Squares (WCSS) value against the total number of catchments in a cluster and selected six
clusters as the suitable number of clusters that minimized map visual complexity enough to guide manual site selection while
maintaining a level of variation in key biophysical characteristics representative of the Columbia River basin. Clusters 1 and 3-6
130  were categorized according to tree height, precipitation, and elevation (Table 1 and Table S3). Cluster 2 was categorized as “Water
dominated” and was not used for selecting sites. Cluster analysis results were then used to guide the selection of 47 field sites
distributed across Strahler stream orders 2—7 (the highest order stream in the Yakima River basin) that spanned the basin and
captured the variation in biophysical characteristics represented by clusters 1 and 3—6 (Fig. S1). First order and other non-perennial
streams were not sampled due to the lack of flow during summer baseflow or baseflows were too low to support sampling. We
135 attempted to include logistical considerations in model-based site selection, but this task proved impractical and field-scouting
trips were needed to refine site selections. Day-of-sampling changes to the sampling plan were made on-the-fly when the Schneider
Springs Fire started on the Okanogan-Wenatchee National Forest. Fire activity and road closures restricted access to a large portion
of the Yakima River basin, primarily in the Tieton River and American River watersheds located in the midwestern portion of the
basin.

140  Table 1. Cluster analysis results characterizing NHDPlusV2.1 catchments across the Columbia River basin and Yakima River basin with
similar biophysical and hydrologic characteristics and the number and percentage of sites in each basin.

Cluster Name CRB YRB YRB Sites Percent
Drainage Drainage Per YRB Sites
Area Area Cluster Per Cluster
1 Tree dominated high elevation 23% 27% 9 19%
mesic
2 Water dominated 3% 2% 0 0%
3 Tree dominated high elevation 7% 2% 2 4%
hydric
4 Shrub-steppe middle elevation 25% 28% 10 21%
xeric
5 Tree dominated middle elevation 17% 17% 13 28%
mesic
6 Tree dominated middle elevation 24% 23% 13 28%
xeric

“CRB Drainage Area” is the percentage of the total drainage area of the Columbia River basin that was classified in each cluster. “YRB Drainage

Area” is the percentage of the total drainage area of the Yakima River basin that was classified in each cluster. “YRB Sites Per Cluster” is the

total number of field sites in the Yakima River basin (n = 47) located in each cluster. “Percent YRB Sites Per Cluster” is the percentage of the
145 total number of sampling sites in the Yakima River basin located in each cluster.
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2.3 Water column respiration data collection

We measured ERy. (g O> m>d™") in triplicate for 2 h at each site between 30 August and 15 September 2021 using a modified
“semi-in situ” dark bottle incubation (Genzoli & Hall, 2016) (Fig. 1a). Calibrated DO sensors (miniDOT Logger; Precision
Measurement Engineering, Inc.; Vista, CA, USA) recorded DO concentration (mg L) and temperature (°C) at 1 min intervals in
150  2-L dark bottles (Nalgene™ Rectangular Amber HDPE bottles; ThermoFisher Scientific; Waltham, Massachusetts, USA) (Fulton

et al., 2022). Bottle necks were slightly widened (1 to 2 mm) to accommodate the diameter of the DO sensor.

At the start of each sampling day, DO sensors and all sampling equipment were placed in a cooler with blue ice packs to keep them
cool and minimize the time needed at each site for the sensors to equilibrate with the similarly cool river water temperatures. Upon
155 arrival at each site, bottles were rinsed three times with river water and then filled by wading as close to the thalweg as possible,
submerging the bottles below the river surface, and rolling them 360 degrees while held upright underwater to ensure no air bubbles
were present in the bottles (Fig. 1a). Bottles were secured upright in a cooler filled with river water, placed in the shade on the
streambank, and allowed to equilibrate for 20 min. Following the 20 min equilibration period, the bottles were emptied and re-
filled with fresh river water and a small, battery-powered mixing device (Underwater Motor, Item Number 7350; Playmobil;
160  Shanghai, China; rechargeable AA NiMH battery; Amazon; Seattle, Washington, USA) and the DO sensor was gently inserted
(sensor face-up) in the bottles to minimize trapping air bubbles in the bottles. The bottles were capped underwater and returned to
the water-filled cooler. The bottles were incubated for 2 h, and river water surrounding the bottles in the cooler was replenished

every 20 min to maintain in situ temperature.

165 Figure 1. Modified semi-in situ dark bottle incubation method and example study sites. (a) Underwater photograph of DO sensor being
inserted into incubation bottle filled with river water and mixing device. Right panels emphasize the diversity of environmental settings covered
in this study. (b) North Fork Teanaway River (site S19E), Kittitas County, Washington, September 2021. Site S19E is classified as a mesic, high
elevation site dominated by tree canopy (Cluster 1; see Table 1, Table S3, Fig. S1). (¢) Yakima River at Mabton (site T02), Yakima County,
Washington, September 2021. Site T02 is classified as a mesic, middle elevation site dominated by tree canopy (Cluster 5; see Table 1, Table

170  S3, Fig. S1).
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2.4 Surface water chemistry sample collection and analysis

Filtered surface water samples were collected at each site for dissolved inorganic C (DIC, mg L™'); dissolved organic C (DOC, mg
L"); total dissolved N (TDN, mg L"); anions, including nitrate (NOs", mg L"), chloride (Cl,, mg L), and sulfate (SO, mg L),
and DOM chemistry using a 50-mL syringe and 0.22 pm sterivex filter (MilliporeSigma™ Sterivex™ Sterile Pressure-Driven
175 Devices; MilliporeSigma™; Burlington, Massachusetts, USA) (Grieger et al., 2022). Samples were collected in triplicate from
50% of the water column depth. Prior to sample collection, filter assemblies were rinsed once by pushing 5 mL of river water
through the filter. DIC, DOC and TDN samples were filtered into 40 mL amber glass vials (Amber Clean Snap Vials; Thermo
Fisher Scientific; Waltham, Massachusetts, USA). DIC samples were collected by attaching a sterile 18 g needle (BD General Use
and PrecisionGlide Hypodermic Needles; Becton, Dickinson and Company; Franklin Lakes, NJ, USA) to the sterivex filter and
180 pushing three vial-volumes of river water (~150 mL) slowly through the syringe to prevent the introduction of air bubbles to the
sample, allowing the vials to overflow continuously. When the final 50 mL of river water was pushed through the syringe, the vials
were capped with a surface tension dome of water to ensure no headspace. Samples collected for ion analysis were filtered into a
15 mL conical tube (Olympus™ Plastics; Genesee Scientific; Morrisville, NC, USA). Samples collected for DOM chemistry were
filtered into pre-acidified (85 % phosphoric acid, H;PO4) 40 mL amber vials (Amber Clean Snap Vials; Thermo Fisher Scientific;
185 Waltham, Massachusetts, USA) (Grieger et al., 2022). One unfiltered grab sample for total suspended solids (TSS, mg L") was
collected using a pre-washed 2-L amber bottle (Nalgene™ Rectangular Amber HDPE Bottles; ThermoFisher Scientific; Waltham,
Massachusetts, USA). TSS bottles were rinsed three times with river water prior to sample collection. All samples were stored on
ice in the field and then refrigerated at 4° C before shipping for analysis to the Pacific Northwest National Laboratory (PNNL)
Marine and Coastal Research Laboratory in Sequim, Washington (DOC and DIC) and PNNL Biological Sciences Facility
190 Laboratory in Richland, Washington (TSS, ions, and DOM). TSS samples were analyzed within one week of collection, DOC and
TDN were measured within two weeks of collection, DIC was measured within one month of collection, and ion and DOM samples

were frozen (-20 °C) upon receiving until analysis.

DOC, TDN, and DIC were measured on a Shimadzu TOC-L Total Organic Carbon Analyzer. DOC was measured as non-purgeable
195 organic C (NPOC). Anion concentrations were determined quantitatively on a Dionex ICS-2000 anion chromatograph with AS40
auto sampler using one replicate. An isocratic method was used with 23 mM KOH eluent at 1 mL/minute at 30°C. The analytical
column was an IonPac AS18 (4 x 250 mm, Dionex catalog # 060549). The suppressor was a ADRS 600 set at 57 mA (4 mm, self
regenerating, Dionex catalog # 088666). Concentrations below the limit of detection (LOD) of the instrument, or below the standard
curve, were flagged (Grieger et al., 2022). Replicates with a coefficient of variation greater than 30 % were flagged and the outlier
200 sample was identified and removed from analysis by calculating the distance between each of the replicate samples. For samples
below the lowest standard value (TDN: 0.1 mg L', NO5: 0.07 mg L), one half of the lowest standard value was used (TDN: 0.05
mg L', NO3: 0.035 mg L") for statistical analysis. For samples below the limit of detection (TDN LOD: 0.07 mg L''; NO5 LOD:
0.07 mg L"), but above the lowest standard, one half of the LOD value (TDN: 0.035 mg L''; NO;: 0.035 mg L) was used for
analysis. Parameter mean values for each site were then calculated from the remaining replicates.
205
TSS samples were filtered in the laboratory through a pre-weighed and pre-combusted 4.7 cm, 0.7 pm GF/F glass microfiber filter
(Whatman™ glass microfiber filters, Grade 934-AH®; MilliporeSigma; Burlington, Massachusetts, USA). After water filtration,
the filter and filtration apparatus were rinsed with 30 mL of ultrapure Milli-Q water (Milli-Q® IQ Water Purification System;
MilliporeSigma; Burlington, Massachusetts, USA) to ensure that all residue was captured by the filter. The filter was placed in foil
210 and oven dried overnight at 45° C. TSS (mg L") was calculated as the difference between the weight (mg) of the filter before and

6
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after filtration of the water sample divided by the volume of water filtered (L). For samples below the LOD, one half of the LOD
value (LOD: 0.24 mg L") was used for analysis.

2.5 DOM chemistry via ultra-high resolution mass spectrometry and biochemical transformations

Organic matter chemistry was characterized via ultra-high resolution mass spectrometry using a 12 Tesla (12T) Bruker SolariX
215 Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) at the PNNL Environmental Molecular Sciences
Laboratory in Richland, Washington, following methods described in . Measured DOC concentrations were used to normalize the
DOC concentration of the sample to 1.5 mg C L' prior to further processing. Samples were thawed in the dark at 4°C overnight
before acidifying to pH 2 using 85 % H3PO4. Samples were then subjected to solid phase extraction (SPE) using Bond Elut PPL
cartridges (Agilent; Santa Clara, CA, USA) following protocols employed by Dittmar et al. (2008). Extracted samples were run in
220 the FTICR-MS with a standard electrospray ionization source in negative mode. Data were collected with an ion accumulation
time of 0.08 seconds. BrukerDaltonik Data Analysis version 4.2 was used to convert raw spectra to a list of molecular compound
mass-to-charge ratios (m/z) with a signal-to-noise ratio (S/N) threshold set to 7 and absolute intensity threshold to the default value
of 100. Peaks were aligned (0.5 ppm threshold) and molecular formula were assigned using the Formularity software with S/N >
7 and mass measurement error < 0.5 ppm (Toli¢ et al., 2017). The Compound Identification algorithm takes into consideration the
225 presence of C, H, O, N, S, and P and excludes other elements. Aligned and calibrated data was further processed using
ftmsRanalysis (Bramer et al., 2020). Replicate samples were merged into one site where peaks in a sample were retained if they
were present in at least one of the replicates. DOM biochemical transformations were inferred following methods previously
employed by Ryan et al., (2024); Danczak et al., (2023); Fudyma et al., (2021); Garayburu-Caruso et al., (2020); Stegen et al.,
(2018). In summary, we calculated pairwise mass differences between every peak in a sample regardless of molecular formula
230 assigned and compared that mass difference to a list of 1,255 molecular masses associated with commonly observed biochemical
transformations (Table S4). Biochemical transformations allow you to infer the number of times the mass that corresponds to a
specific molecule is gained or lost. For example, if a mass difference between two peaks corresponded to 128.095, that would
correlate to the loss or gain of the amino acid lysine (see Table S4). We further calculated the total number of DOM transformations
per site and the total number of DOM transformations normalized by the number of peaks present in the site (i.e., “normalized

235 DOM transformations”).

2.6 DO sensor data cleaning, processing, and analysis

We extracted the raw DO concentration (mg O, L™!) and temperature (°C) sensor data for each site and plotted DO and temperature
against incubation time for each set of triplicate incubations (n = 141). The plots were visually inspected to a) confirm that
temperature sensors were at equilibrium with the river temperature when the 2 h incubation test period began and b) identify data
240 gaps, outliers, and other data anomalies. Following the visual inspection of plots, the first 5 min of the time series was removed,
then the data was trimmed to 90 min to account for anomalies due to emptying and refreshing river water in the bottles, and to

ensure all sites had the same incubation time. Sensor data distributions were also evaluated using violin plots for each site.

ERy. rates for individual triplicate incubation samples were calculated as the slope of the linear regression between the DO sensor
245  data and the incubation time, which was converted to (g O, m™ d™!) units. All samples met the normalized root mean square error
(NRMSE) criteria of < 0.01 (Shcherbakov et al., 2013). Mean ER. for each site and the global mean and variance were then
calculated from the samples (n = 141). Nearly one-fifth of ERy. values were slightly positive. Positive respiration rates are

biologically unrealistic, however positive values less than 0.5 g O, m3 d! are difficult to distinguish from zero (Appling et al.,
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2018b). Thus, we retained positive ERy, values less than 0.5 g O, m™ d”!' and removed values greater than 0.5 g O, m> d'!' (n = 2).
250  ERy, values greater than 0.5 g O, m™ d"!' were observed when the DO concentration in the bottle started near 5 mg O, L' and
increased over the 2-hour incubation period. The increase in concentration and the high, positive respiration rate is likely due to

diffusion of DO through the bottle walls.

2.7 Relationship of water column respiration rates to watershed characteristics and surface water chemistry

We evaluated the relationship between ER,., watershed characteristics, physical parameters, and surface water chemistry using
255 LASSO regression models, which performs variable selection and model regularization, to establish the suite of explanatory
variables that most influence variation in ERy. across the Yakima River basin. We observed that several model input variables had
skewed distributions, thus a cube root transformation was applied to all variables to reduce the impact of high leverage points in
the regression analysis. Further, all data was standardized as z-scores before analysis to ensure all data was in the same quantitative
range. [ coefficients reported for each variable were calculated by performing LASSO regression using the glmnet function in R
260 (Friedman et al., 2010) over 100 random seeds, normalizing to the maximum f coefficient in each regression, and averaging the
normalized B coefficients across the 100 iterations. The minimum penalty parameter (1) determined by cross validation was used
in each regression. Because LASSO regression was used for exploratory analysis, not prediction, data was not split into training
and testing sets. Drainage area (km?) was defined as the total upstream drainage area from each site and was extracted for each site
from the NHDPlusV2.1 stream database using site latitude and longitude. Stream order for each site was extracted as the reach
265  attribute “StreamOrde” from the NHDPlusV2.1 stream database, which is a modified version of Strahler stream order (Blodgett &
Johnson, 2022; McKay et al., 2012; Willi & Ross, 2023). To evaluate whether the directionality of relationships observed in the
LASSO regression were consistent with univariate relationships, we used Pearson correlations between ER,, drainage area, water

chemistry, and environmental factors; these correlations were calculated using the cor function in R.

2.8 Comparison to published water column respiration rates

270  To contextualize the magnitude of observed ERy. rates in the Yakima River basin, we compared our results to published literature
values of ERy (n = 118) (Table S5) and ER (n = 208). Published ERy, values were converted to volumetric units (g O m™> d )
using standard unit conversions. For example, molar values (umol O, L' H™!) as in Devol et al. (1995) and Quay et al. (1995)
were corrected using the molar mass of oxygen and standard time conversions. When ERy,. was reported with respect to C or
carbon dioxide (CO>), as in Ellis et al. (2012) and Ward et al. (2018), conversions provided in the text were used to convert to an
275 O, basis. Areal estimates of ERyc (g O, m2 d '), as in Genzoli and Hall (2016) and Reisinger et al. (2021), were converted to
volumetric units by multiplying by 1/depth (m™!) using same-day depth data for each reach studied. We also compared our ERy,
values to daily reach-averaged estimates of ER (n =490,907) for 356 rivers and streams across the CONUS by using the datasets
published in Appling et al., (2018b) and Bernhardt et al., (2022) where ER,« was estimated by a single-station, open channel
approach using the streamMetabolizer package in R (Appling et al., 2018b, 2018a). For our comparative analysis, we used the
280 cleaned, gap-filled data from Bernhardt et al. (2022) (n = 208). The Bernhardt et al. (2022) sites are a subset from the Appling et
al. (2018a, 2018b) dataset generated through a robust data quality analysis to remove sites potentially affected by process or
observation error. For comparison with our ERy, values, we first averaged Bernhardt et al. (2022) ERy areal units (g O, m? d)
at each site. Then, average ER values were converted to volumetric units by calculating average river depth per site from the

Appling et al. (2018a, 2018b) dataset and multiplying average ER by 1/depth.
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285 3 Results and discussion
3.1 Yakima River basin ERv. rates spanned literature values

At baseflow conditions, ERy. varied widely across the Yakima River basin. The linear regression models for each triplicate set of
DO sensor measurements were well-fit to the data and all sites met the criteria for NRMSE <0.01 (Fig. S2; Fig. S3). After removing
positive respiration rates > 0.5 g O> m~ d™! which are associated with diffusion effects on DO, ERy. rates ranged from -7.38 to
290 0.36 g O, m™ d!, with a median value of -0.58 g O, m™ d™! (mean: -0.82 g O, m™ d!, standard deviation = 1.25 g O, m> d")
(Fig. 2a). Thirteen sites had at least one replicate incubation where ERy. > 0.0 g O, m d”!, indicating that at those sites, true ERy
values were too small to overcome instrument noise. Data from these seven sites were retained to avoid biasing the results of this
study by including only high respiration rates. Overall, the consistent data between triplicate measurements illustrates that the
method was effective in providing repeatable estimates of ERy. rates throughout the Yakima River basin (Fig. S2; Fig. S3).
295
The values of ERy. observed in our study spanned the range of published literature values (Fig. 2; Table S5). From 118 published
measurements of ERy. across the CONUS and the Amazon River basin, ERy. ranged from -4.63 g O, m> d! to -0.07 g O, m™
d~!. We compared median values, rather than means, across studies as medians are more appropriate for skewed distributions and
are less sensitive to outliers in the data. The median ERy. from this study (-0.58 g O, m~ d™!) is slower than the median of literature-
300 reported ERy. values (-0.96 g O, m™ d!). However, the fastest ERy rate in the Yakima River basin (-7.38 g O, m~ d!), exceeded
the fastest reported literature value (-4.63 g O, m~> d")(Reisinger et al., 2021). Reisinger et al. (2021) measured ERy. in 15 mid-
sized rivers across basins with differing turbidity levels and nutrient concentrations, finding a similar median ERy. (-0.60 g O, m™
d™") to this study. In the Klamath River, median ERy (-0.51 g O, m™ d™') was also similar to the Yakima River basin. However,
ERy. doubled following summer cyanobacteria blooms, emphasizing the temporal variability in water column processes with
305 changing environmental conditions (Genzoli & Hall, 2016). In the Amazon basin, literature comparisons varied, with median ERy.
measurements similar to those found in the Yakima River basin in some studies (i.e., Devol et al., 1995; Ellis et al., 2012; Quay et
al., 1995) and faster than the Yakima River basin in others (i.e., Ward et al., 2018). Ward et al. (2018) highlighted the importance
of mixing in large rivers, noting that previous measurements of aquatic respiration in large tropical rivers, such as those measured
in Quay et al. (1995) and Devol et al. (1995), may underestimate microbial respiration contribution due to lack of mixing during
310 rate measurements. While comparisons across study medians are variable, the observation that ERy. in the Yakima River basin
spans — and exceeds — reported literature values highlights the potential for using it as a test basin for understanding and

uncovering transferable principles linked to stream metabolism.

While ER estimates are not available across the Yakima River basin at the time of ER,, estimation for this manuscript, measured
315 ERy. rates spanned a large fraction of CONUS-scale ER rates estimated by Appling et al., (2018a, 2018b) and Bernhardt et al.
(2022). ERy rates are reach-scale estimates of stream metabolism derived from time series measurements of DO. This method
assumes well-mixed conditions such that sensor measurements represent homogenous reach observations. Under well-mixed
conditions, ERy. measurements from dark bottle incubations are also representative of reach-scale processes. The median ER for
208 CONUS measurements was -5.25 g O> m> d! with a range from -36.55 to -3.73 g O, m> d"'. The median ERy, rate (-0.58 g
320 O, m3d") observed in the Yakima River basin was 11% of median ERyy (Fig. 2). The fastest ERy, rate in the Yakima River basin
(-7.38 g0, m3d"), was faster than the median ER (Fig. 2). Given the overlap of ERy, from the Yakima River basin with CONUS-
scale ERo, we suggest that ER,. typically represents a small fraction of ER but may occasionally have larger contributions across
the Yakima River basin. In comparison, Genzoli and Hall (2016) observed that before summer cyanobacteria blooms, ERyc

contributed around 10% of ER in sites along the Klamath River, with the contribution of ERy. to ERo increasing following

9
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325 cyanobacteria blooms. Additionally, Reisinger et al. (2021) found that ER... was not the dominant contributor to ER in mid-sized
rivers, except at sites with low ER (mean ERy. contributions to ERo: 35%, range 2 — 81%). While these studies have shown
spatiotemporal variability of the contributions of ERy. to ERy, exploring these relationships in the Yakima River basin requires

further research where ERy is measured in conjunction with ER .
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Figure 2. Water column respiration data from the Yakima River basin (ERwc (this study); n = 45), published water column respiration
rates (ERwc (Lit); n = 118), and reach-scale estimates of ecosystem respiration by Appling et al., (2018a, 2018b) and Bernhardt et al.
(2022) (ERtt; n = 208). (a) Kernel density plots of ERwc from the Yakima River basin (this study), published ERw. rates (Lit) that have been
converted to the same units as this study (g O2 m=d"), and published reach-scale ERwt (Lit) from Bernhardt et al. (2022) that have been converted

335  to volumetric units using depth data from Appling et al. (2018a). The left y-axis is for ERwe values. The right y-axis is for ERwr values. The
vertical blue line is the median ERwc observed in the Yakima River basin (-0.58 g O2 m™ d!). The vertical red line is the median ERwc values
from studies in rivers across the CONUS and the Amazon River basin (-0.96 g O2 m= d!). The vertical black line is the median ER value (-
5.25 g 02 m3d™"). (b) Boxplots of published ERwc and ERwc from the Yakima River basin. The blue horizontal dashed line represents median
ERuwc in the Yakima River basin. The red horizontal dashed line represents median ERwc from literature values.

340

3.2 Water column respiration rates varied weakly with drainage area and stream order

We observed a correlation between ERy. and drainage area across the Yakima River basin that was weak enough that we consider
it to effectively reject the hypothesis that ERy. is faster moving down the stream network (Fig. 3). The lack of a strong connection
between ERy. and drainage area is somewhat surprising as such a relationship could emerge from downstream C transport as well
345 as increasing autochthonous C inputs due to increasing temperature and light availability, providing additional substrate for
microbial respiration (Finlay, 2011; Webster, 2007). The fastest observed ERy. rate in the Yakima River basin occurred in an
agriculturally influenced, low gradient, 5™ order stream, as opposed to a higher order river (Fig. 3). The conditions at this sampling
location were not representative of the whole drainage area, as areas upstream of this site are mountainous with little human
influence. This finding suggests that localized factors, not upstream conditions or drainage area, provide primary controls over
350 ERu.. Anthropogenic impacts, such as from agriculture and urbanization, can alter nutrient dynamics and flow regimes in these
areas, influencing biogeochemical processes such as ERy. (Bernot et al., 2010). The weak correlation between ER,, and drainage
area in the Yakima River basin likely reflects the interplay of multiple factors, including spatially variable local conditions,

underscoring the complex controls on ecosystem processes in this region.

355

10



https://doi.org/10.5194/egusphere-2025-1109
Preprint. Discussion started: 21 March 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

360

365

370

(a) — (b)
L )
e (]
i v & e . = ()
g o
-3 -1 p
ER, (g O, m*d") =
Q- g
7 °
@ -8 g . ad
o ®
@ -1.82--057 o r o ©°©
@ -056--008 o ” ;- P
s 005-036 5 -1 i
1d
i @
.
] 2 r=-0.31 ®
BT 35 T A 5 10 15 20 25
- Total Drainage Area (km?2)""®
Land Use/Land Cover Stream Order
Il Open Water Forest Herbaceuous Wetlands . ® 6 o
Developed [l Shrub/Scrub Agriculture 2 3 4 5 6 7

Figure 3. ERy. across the Yakima River basin and its relationship with drainage area. (a) Map of land use/land cover classes in the Yakima
River basin with ERwc values (g O2 m™ d™!) overlaid. Faster rates are indicated by larger circle diameters. The fastest rate is indicated by the
yellow circle. The map was generated using the Free and Open Source QGIS (v. 3.16.1 and v. 3.26.0). Map data include catchment boundaries
and hydrography from the National Hydrography Dataset Plus (NHDPIusV2.1) (McKay et al., 2012) and 2016 land use/land cover data from the
National Land Cover Dataset (Brown, 2024). (b) Scatter plot of cube root transformed ERwc related to cube root transformed total drainage area
with points colored by stream order. The Pearson correlation coefficient (r) is provided on the panel.

3.3 Higher temperatures and nutrient concentrations are associated with faster ERwc.

Regression analyses show that ER in the Yakima River basin varied with chemical and physical water quality parameters. TDN,
temperature, DOC, and TSS emerged as key variables in the LASSO regression, whereby ERy.. was faster with higher values of
all these variables (Table 2). The LASSO regression explained 40% of the variation in ERy. (Table 2). LASSO results are similar
to univariate relationships, whereby DOC, TDN, temperature, and TSS had the strongest correlations with ERy. (r =-0.44 to -0.53)
(Fig. 4, Fig. S4) and all correlations were qualitatively in the same direction as indicated by the LASSO f coefficients. Collectively,
the relative importance of these variables suggests that ERy. is not controlled by a single variable, and instead multiple factors
(i.e., nutrient concentrations, suspended particles, and temperature) are simultaneously linked to ERy.e.

Table 2. B coefficients from LASSO analyses for explaining ERw. across the Yakima River Basin. ERw. and all explanatory variables were
cube root transformed and standardized as z-scores. LASSO was performed over 100 seeds, and B coefficients for each variable were normalized
to the maximum [ coefficient in each seed and averaged across all seeds for the reported values. Values of zero indicate that while the variable
was included in the model, it was deemed not influential in predicting model outcomes and thus was not assigned a B coefficient.

Predictor Variable Mean  Coefficient Standard Deviation
TDN -0.98 0.03
Temperature -0.95 0.08
DOC -0.74 0.09
TSS -0.48 0.09
NOs -0.04 0.11
SO4 0 0
Normalized DOM Transformations 0 0
DIC 0 0
DOM Transformations 0 0
DOM Peaks 0.002 0.01
Total drainage area 0.01 0.04
Cr 0.13 0.25
R? 0.40

11
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Figure 4. Scatter plots of cube root transformed variables that were important in the LASSO regression. Cube root transformed ERwc is
the y-axis for all panels. (a) cube root transformed total dissolved nitrogen (TDN); (b) cube root transformed temperature; (c) cube root
transformed dissolved organic carbon (DOC); (d) cube root transformed total suspended solids (TSS). Pearson correlation coefficients (r) are
provided on each panel.

Faster ER. with increasing TDN, temperature, DOC, and TSS in the Yakima River basin is expected, as nutrients and temperature
can impact variation in stream metabolism (Ardon et al., 2021; Bernot et al., 2010; Honious et al., 2021; Hornbach, 2021; Nakano
et al., 2022). In-stream metabolism relies on terrestrially-derived and internally-fixed inputs of DOC, which supports heterotrophic
metabolism that degrades and removes organic C inputs through respiration (Hall et al., 2016; Hotchkiss & Hall, 2014; Plont et
al., 2022). Faster ER( and ERy. have been reported with increases in DOC (Bernot et al., 2010; Ellis et al., 2012). However,
elevated DOC does not always correspond to greater ER, as discharge and residence time also affect C dynamics (Ulseth et al.,
2018). In addition to DOC, suspended sediment can regulate ecosystem metabolism by decoupling ecosystem respiration and GPP
through limiting light availability, thereby reducing autochthonous C production, and conversely, by stimulating processing of
organic matter through increased surface area (Glover et al., 2019; Honious et al., 2021). The increased surface area of suspended
particles in the water column provides microsite habitats for microorganisms (Ochs et al., 2010; Liu et al., 2013), where bacterial
production and enzymatic activity is concentrated, contributing substantially to material processing in the water column,
particularly in rivers 5 order and higher (Gardner & Doyle, 2018; Reisinger et al., 2015). Nutrient dynamics, particularly N, also
influence ecosystem respiration, where elevated N concentrations have been linked to increased ecosystem respiration across
stream orders (Benstead et al., 2009; Reisinger et al., 2016, 2021; Rosemond et al., 2015). Nitrogen is a key nutrient for microbial
growth and is often a limiting nutrient in freshwater rivers (Carroll, 2022). Consistent with this, we found the fastest ERy. at an
agriculturally-influenced stream with the greatest TDN and NOs™ concentrations. Elevated nutrient levels at this site likely stimulate

microbial respiration, similar to Cross et al. (2022) who found an increase in heterotrophic respiration in response to N enrichment.

12
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Moreover, respiratory processes are typically faster at higher temperatures (Pietikédinen et al., 2005), which can shift riverine
ecosystems toward heterotrophy (Song et al., 2018). By stimulating microbial respiration, higher temperatures can also amplify
400 the effects of increasing nutrients (Cross et al., 2022). Ultimately, our results emphasize the complex and dynamic roles of the

physical, chemical, and biological factors that influence ERy. in the Yakima River basin and other similar freshwater ecosystems.

4 Conclusions, limitations, and next steps

Our study shows that ERy. rates observed in rivers and streams across the Yakima River basin span published rates from studies
conducted in rivers across the CONUS and the Amazon River basin. While this study didn’t measure ERy, the observed overlap
405 Dbetween ERy. and literature ER( show the potential relevance of ERy. to overall stream metabolism. We pose that the high
variability observed in ERy. rates across the basin will likely translate into variable contributions of ERw. to ERy, ranging from
negligible to potentially dominant. We anticipate that these influences will not vary systematically moving down the stream
network as we observed a very weak association between ER,, and drainage area across the Yakima River basin. Our results point
to more localized control and the LASSO regression specifically indicated that ER,. is faster with increasing TDN, stream
410 temperature, DOC, and TSS, consistent with previous work. Overall, our findings show that the complex interactions between
physical and chemical factors affect the spatial variability in ERy. across the Yakima River basin. We encourage future work to
expand on our current study by collecting both ER,. and ER; measurements at a basin scale, and to parse the contributions from

both the water column and sediments to total ecosystem metabolism.

Code and data availability

415 Data and scripts used to generate the main findings within this manuscript will be published at the U.S. Department of Energy’s
Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) repository (https:/ess-
dive.lbl.gov/about/) upon manuscript acceptance. Currently, scripts associated with this manuscript are located on GitHub
(https://github.com/river-corridors-sfa/rcsfa-RC2-SPS-ERwc). Other data collected during the field efforts (i.e., sensor data;
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420 accessed on ESS-DIVE .
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